
MSE-238
Structure of Materials

Week 13 – composites 
and wrap –up

Spring 2025

Marianne Liebi (MX/PSI)

Ecole Polytechnique Fédérale de Lausanne



General Outline

• introduction and reminder of atomic bonds, crystals – week 1

Part I: crystallography - weeks 2-6

• packing of spheres, constructing crystal structure week 2

• crystal lattice and symmetry operations week 3

• mathematical description of the lattice, Miller indices week 4

• reciprocal space (&diffraction) week 6

• characterization I: diffraction week 7

• diffraction & recap of crystallography week 8

BREAK 18.4. & 25.4.

Part III: amorphous & hierarchical structures – week 9-13

• glasses

• polymers

• Characterization II: scattering

• biological and hybrid materials week 12 & 13

Recap – week 13
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Hybrid materials/Composite materials
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Ancient Egypt: improved mechanical properties of 
bricks by adding short straw to clay 

natural composites: 
bone: collagen (protein) and calcium-phosphate 
(ceramic)
wood: cellulose (polysacharide) in Lignin 
(polysacharide)

mud bricks with straw, photo Leon Mauldin

composite materials: mixture on the microscopic scale of several phases

hybrid materials are composites consiting of two consituents at the nanometer or 
molecuar level

not a strict separation between composite and hybrid material. Both combine 
properties from from than one material with distinct structure and chemocal 
composition, contributing synergistically to the physical, chemical or mechanical 
properties



Application

• Mobility (automotive, aeronautics and space)

• Sport (marine, ski, bike, …)

• biomedical (encapsulation, prosthethics) 

• electronic devises (encapsulation, flexibel electronics)

• energy (wind turbines, solar panels integration)

• bio-inpired composites

• construction (cement reinforced with steel)
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Applications: example Boeing 787
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Composite materials

• Reinforced composites:

• fiber composites: continous matrix reinforced with high strenght fibres

• short (discontinous) fibers

• long (continous) fibers

• particulate composites: (isotropic) particles immersed in a matrix

 examples: Al-particle in rubber, silicon carbide in Al, gravel,sand and 
cement forming concrete

• flake composites: flat reinforcements aligned in plane in matrix

matrix can be for example: polymer (mostly thermoset or thermoplastics 
(PEEK)), metalceramic, carbon

• sandwich structures: combining various materials used to form functional 
structures

• functional composites: example composites with sensing functionality
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Polymer fiber composites

MSE-238

properties of the composite determined by
- properties of the fibre
- properies of the resin
- the ratio of fibre to resin (Fibre volum 
fraction)
- the geometry and orientation of the fibres 
in the composites



Polymer fiber composites

MSE-238

glass or aramid: high tensile and compressive 
strength but as solids random surface flaws cause 
material to crack and fail→ in fibre form: same 
number of random flaws but restricted to some fibres 
in a large bundle

resin: easy , but not very resisten against tensile stress 

resin matrix spreads load between each of the 
individual fibres, protects them from abrasion damage
→ high strength and stiffness, low density, easy to 
shape



Polymer fiber composites

• Tension: tensile stiffness and strength properites of the reinforcement fibres

• compression: adhesive and stiffness of the matrix, maintain fibres as straight 
columns, prevent buckling

• shear: matrix plays major role, transferring the stressses across the composite, 
high adhesion between matrix and fibre is improtant

• flexure: combination of tensile, compression, and shear loads
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Fiber reinforced composite

• uniaxially oriented fiber, short fiber composites, woven fibers…

→ glass fibers, mainly aluminium borosilicates, S glass fibers high mechanical 
strength

→ carbon fibers (high modulus fibres HT and high-strength fibres HR)

→ aramid (Kevlar)
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• flexible and deformable components: glass 
fibers (ski, pole for pole vault)

• rigid elements with little deformation: 
carbon fibres (aircrafts)

Mercier, Zambelli, Kurz, “Introduction to Materials Science”, Elsevier



Fiber composites: wind turbine blades

Mikkelsen, L. P. Lecture: Composite materials for wind energy, (2023)  
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Sandwich structure: laminated sheets and 
shells
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Mercier, Zambelli, Kurz, “Introduction to Materials Science”, Elsevier



Functional composites: structural batteries
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coated carbon fibers act as structural reinforcement as well as current collector 



Functional composite example: Hydrogen gas 
sensors 
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Plasmonic plastics composites comprise 

three key components: 

(i) plasmonic metal nanoparticles → 

sensing

(ii) surfactant/stabilizer molecules on 

the nanoparticle surface

(iii) polymer matrix,



Biominerals
• Linear elastic stress-strain plot
• In general high stiffness, low toughness

Biopolymers
• Non-linear, tensile curve or a curve with an 

inflection point
• The distinct properties of biopolymers allow 

these materials to be strong and highly 
extensible with distinctive molecular 
deformation characteristics. 

• In general high toughness, low young’s 
modulus (longitudinal stress divided by the 
strain)

Composites
• Broad variety of constitutive responses
• Many interesting biological materials are composites of flexible biopolymers and 

stiff minerals. The combination of these two constituents leads to the creation of 
a tough material.
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Biocomposites



McKittrick et al. 2010 Materials Science and Engineering C

mineral fraction

Biocomposite: toughness and strength
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Hierarchical materials

Young modulus Strength

Toughness

Φ= aspect ratio
Θ= strain
σth= strength at th hierarchical level
N= number of hierarchical levels
Г= Fracture energy
γ= surface energy

Stiffness, strength and toughness depend on the level in the hierarchy
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• Strength decreases due to existence of 
flaws

• The increase in toughness counteracts
this: A growing crack will encounter
barriers as it propagates
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Hierarchical materials



Bio-composites: hierarchical structure
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Chen, Y., et al. (2021). Advances in mechanics of hierarchical composite materials. Composites Science and Technology, 214, 108970. 



Fiber composite: hierarchical structure
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example: Aramid (Kevlar) fiber 
composite

unidirectional or 
woven structures



Bio-composites: hierarchical structure
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Chen, Y., et al. (2021). Advances in mechanics of hierarchical composite materials. Composites Science and Technology, 214, 108970. 



Example: Mollusk shell
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Chen, Y., et al. (2021). Advances in mechanics of hierarchical composite materials. Composites Science and Technology, 214, 108970. 

prismatic layer: mainly calcite

The crystalline structure of Calcium carbonate: Polymorph

nacre layer: mainly aragonite



Abalone nacre: 
a superior fracture toughness

Three contributions to the mechanical performance
• Mineral bridges attach the tiles together
• Tile surfaces have asperities and produce frictional resistance and strain hardening
• Energy is required for stretching and shearing of the organic layer

Meyers et al. 2011 Journal of the mechanical behavior of biomedical materials
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Bioinspired materials

Yin, S.;  Guo, W.;  Wang, H.;  Huang, Y.;  Yang, R.;  Hu, Z.;  Chen, D.;  Xu, J.; Ritchie, R. O.,. 

Journal of the Mechanics and Physics of Solids 2021, 149.

Strong and Tough Bioinspired Additive-Manufactured Dual-Phase 

Mechanical Metamaterial Composites
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Recap 
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The hard sphere model

30

•  A first intuitive representation of crystals can be obtained by considering atoms as 
hard spheres packed into 3D geometrical forms. 

• Metals have loose requirement on the number of first neighbor . Intuitively, the 
closer the ions from one another, the higher the electrostatic potential they will 
create in the material, resulting in a lower energy for electrons. So metals will 
tend to form dense packing, up to 12 nearest neighbors ! 

• Semiconductors or dielectrics like C or Si that are covalently bounded will need 
to respect the Octet rule and to have 4 closest neighbor. 

Face-centered Cubic structure typical of 
many metals: Al, Cu, Ag, Au, Ni..

Diamond structure for C or Si: it looks 
more dense but actually is not !
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The hard sphere model

Face-centered Cubic

(= cubic-closed packed)

2 possibilities: 

Hexagonal Compact

▪  2D configuration: 

▪  3D configuration: 

A-B-A

A-B-C
MSE-238 31



Packing density

• Represent motif as rigid spheres (hard sphere model) to give insight about the 
atomic arrangement and resulting properties

• Packing factor/packing fraction p =
𝑁𝑎𝑡𝑜𝑚𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙×𝑉𝑎𝑡𝑜𝑚𝑠

𝑉𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

also called compacity c

• Density: 𝜌 =
𝑁𝑎𝑡𝑜𝑚𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙×𝑚𝑎𝑡𝑜𝑚𝑠

𝑉𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
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Crystalline material

• Definition: A crystalline material is a material characterized by a regular 
arrangement of atoms or group of atoms over “large” distances, i.e. a crystal 
displays translational symmetry over a long range. 
In a crystal it is always possible to identify a group of atoms or molecules 
(can be also one atom) that repeats itself periodically on a grid in space.

• in 2D
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Crystal = Motif + Lattice

R R R

R R R

Motif: repeating “unit of pattern”
here represented by R
atom, group of atoms, molecules → chemical 
composition

Lattice: (imaginary) grid, intersections 
→ lattice points
can be placed anywhere, but always in the same 
position with respect to the motif
in each point of the lattice, the crystal appears 
identical, translational symmetry in between 



Crystalline material

• recap Definition: A crystalline material is a material characterized by a 
regular arrangement of atoms or group of atoms over “large” distances, i.e. 
a crystal displays translational symmetry over a long range. 
In a crystal it is always possible to identify a group of atoms or molecules 
(can be also one atom) that repeats itself periodically on a grid in space.

• in 2D
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Crystal = Motif + Lattice

R R R

R R R

unit cell:  arbitrary ways of joining up the lattice 
points.
primitive unit cell: smallest possible unit, contains 
one lattice point (here 4 times 1/4th)
conventional unit cell: larger unit cell, chose to 
reflect the crystal’s symmetry better
contain more than one lattice points
makes visualization and classification of crystal 
structure easier



The cubic system: unit cells
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primitive unit cell: smallest possible unit, contains one lattice point 
conventional unit cell: larger unit cell, chose to reflect the crystal’s symmetry 
contain more than one lattice points (and motifs)
makes visualization and classification of crystal structure easier

Primitive cubic

basis: (a,b,c)
Body-centered cubic

basis: (a’,b’,c’)  

P

a'
b'

c'

(a,b,c) is not a basis for BCC, P has the 
coordinates (1/2, 1/2, 1/2)



Interstitial Sites: Ionic crystals

36

• Crystal structures have a certain packing density, and hence also a free volume where 

voids exist called interstitial sites. 

• Different rules exist regarding the relative size of the Anions and the Cations in the 

molecules and their charges (take valence into account). 

• For two atoms (NaCl, ClCs, ZnS etc…), a first rule called the Radius Ratio rule, or first 

Pauling rule, establishes a formula that defines the coordination number depending on 

the ratio of the radius of the cation to the one of the anion: 

• 𝜌 =
𝑟+

𝑟−
=

12

12−𝐶𝑁
− 1, where CN = coordination number

• Based on the hard sphere model, it predicts that if the cation is too small, anions get too 

close to each other which lead to an unstable structure due to repulsive forces. 



Covalent crystals and covalent/ionic crystals
• While ionic crystals and crystals with metallic bonds usually take closed packed 

forms, the structure of covalent crystals is dictated by the directional covalent 
bond and the configuration of the atomic orbitals

• high strength of covalent and ionic bonds: high hardness
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“pure” covalent crystals:
Diamond, Silicon
sp3 orbitals → tetrahedrally
coordination number: 4

packing fraction only 34%

many inorganic crystals
mixture of covalent and ionic bonds
Ca+ (CO3)-



Covalent and VDW crystals

• Layered inorganic structures: covalently bond within a layer, van der Waal 
bonds between the layers: graphite, talc, mica

• Organic crystal: covalent bonds within molecule, van der Waal (and H-bonds) in 
between 
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covalent bond
sp2 orbital → planar
in between Van der Waal bonds

graphite
→ anisotropic mechanical properties

organic crystals
molecules strongly bond
if they can be arranged regularly form crystal

Polyethylene crystal
→ soft materials



Symmetries in lattice
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Unit cell with

• The two shortest vectors, a≠b

• Both angles are “closest” to 90°

• Primitive “P” 

→ oblique lattice

rotational symmetry is a point symmetry 
(at least one point remains unchanged)

180° rotational symmetry → 2-fold axis “2”

▪ A symmetry operation is an action that 
leaves an object unchanged. 

▪ A symmetry element is a part of the object 
that doesn’t move during the operation: a 
point, a line, a plane, an entire object. 



5 plane lattices → classification according to 
symmetry 
• lattice: how translation is done, classified according to symmetry in a plane
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p2

p2mm

p4mm

p6mm

c2mm

notation according to 
Hermann–Mauguin 

→ additional symmetries, such as 

2-fold axis, the highest 
symmetry is given
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Cubic

Tetragonal

Orthorhombic

Hexagonal

Monoclinic

Triclinic

a = b = c

α = β = γ = 90º

a = b  c

α = β = γ = 90º

a  b  c

α = β = γ = 90º

a = b  c

α = β = 90º; γ = 120º

a  b  c

α = γ = 90º  β

a  b  c

α  β  γ

a = b = c

α = β = γ  90º
Trigonal or 

rhombohedric

1-fold axis

2-fold axis

3x 2-fold axis

4-fold axis

3-fold axis

6-fold axis

4x 3-fold axis
3x 4-fold axis

defining symmetryin 3D: 7 crystal system 14 Bravais lattices



Point groups

• Point groups are mathematical constructs that capture all the non-translation 
symmetry options that can be performed on an object: reflection, rotation, 
(rotoinversion in 3D)

• From mathematical group theory
• Closure: The combination of symmetry operators is a symmetry operator in 

the group. 

• All symmetry operators have an inverse, some are their own inverse. 

• Identity is part of all the Point group symmetry. 

• Associativity is respected

• A Point Group describes all the symmetry operations that can be performed on a 
motif that result in a conformation indistinguishable from the original. 

• all symmetry operations of a point group must pass through the center of the 
object (point symmetry)
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Symmetry operations in 2D

43

For discrete objects, rotational symmetries can only be discrete: 
2𝜋

𝑛
 

rotational symmetry must be compatible with a translational symmetry!

n=1 → 1-fold, no symmetry
n=2 → 2-fold, 180° rotation
n=3 → 3 fold, 120° rotation
n=4 → 4 fold, 90° rotation
n=6 → 6 fold, 60° rotation

4-fold

6-fold

no 5-fold!

and mirror symmetry (m)



Point Symmetry operations in 3D

• Rotation axis

1-fold ( no symmetry)

2-fold (180°rotation) 

3-fold ( 120°rotation)

4-fold ( 90°rotation)

6-fold (60°rotation) 

• Reflection or mirror plane

• the inversion center and the roto-inversion axis 
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every point pulled through center of inversion I

rotation and inversion combined → roto-inversion

→ in 2D rotation axis perpendicular to the plane
→ in 3D there can be several axes in idfferent directions

(but always through the center of the object)



32 Point groups in 3D
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2D Plane groups
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crystal = lattice + motif

combine the 10 2D point groups with the appropriate 5 lattice 
→ total number of 2D pattern, the so called plane groups

For the oblique lattice, a motif with no 
symmetry would match. 

A motif with a 2-fold symmetry also

we could put the point group 
2 on a square lattice

But it does not bring new symmetry, no 4-fold 
symmetry, but the 2-fold symmetry is maintained: 
so it is the same group symmetry as the oblique p2.
→ no new plane group



Travel symmetry operations 2D

47

Point symmetries combined with the lattice of matching symmetry:

4 fold symmetry will only be associated to the square lattice. 

▪ One could think that there is only 2 plane groups associated with the 2 point 
groups noted 4 and 4mm. 

▪ There is however a third one 
     Associated to a glide plane symmetry noted g. 

▪ Glide planes are added due to the translational symmetry of the crystal



Travel symmetry operations in 3D
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Glide plane:

Reflect through a plane then translate parallel 
to it

Screw axis
Rotation by 360/N around an axis and 
translation along the axis



17 plane groups in 2D
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230 space groups in 3D

51

▪ The construction of the space groups associated to the 3D 14 Bravais lattices, from the 32 3D 
point groups, proceed similarly than in 2D, but:

o 3D has 32 point groups and not 10, because of extra possible symmetry operations: 
inversion and roto-inversion. 

o For glide planes, the glide can happens along different directions in 3D;

o Screw axis operations also occur: nm is a n-fold rotation followed by a translation 

▪ The first letter is a capital letter indicating the Bravais lattice, and many different types occur: 
P, I, F, C

▪ Glides bring several new types of symmetries and notations: 
o a,b,c: glide translation along half the lattice vector of this face;

o N,d: glide translation along half and a quarter respectively, along the face diagonal 
o e: two glides with the same glide plane and translation along two half-lattice vectors. 

▪ There are 230 space groups that can be built from the 32 point group in 3D. 

▪ A list of all the space groups can be found here: 
https://en.wikipedia.org/wiki/List_of_space_groups

▪ A more concise one: https://en.wikipedia.org/wiki/Space_group

▪ You can find them all here: https://onlinelibrary.wiley.com/iucr/itc/Ac/contents/

https://en.wikipedia.org/wiki/List_of_space_groups
https://en.wikipedia.org/wiki/Space_group
https://onlinelibrary.wiley.com/iucr/itc/Ac/contents/


52

• For the cubic Bravais Lattice, the BCC and FCC structures add atoms that do not 
change the symmetry operations ! 

• Space groups are then  𝑃4/𝑚ത32/𝑚, I4/𝑚ത32/𝑚 and F4/𝑚ത32/𝑚 respectively. 
• Example: let’s look at F4/𝑚ത32/𝑚 (#225)

• What happens when we change the motif ? Diamond structure: 

• The extra atom in this case changes the possible symmetries
• Space group: Fdത3𝑚 (#227): → glide symmetry gained, other lost
• still highly symmetric, order of the group 48 

As the motif looses symmetry, the symmetry of the resulting crystal 
tends to be lower. 

Symmetry in 3D: Space groups

for example Aluminium



Symmetry in 3D: Space groups

53

What happens when we add atoms of different nature ? 

• Diamond structure becomes Zincblende when 
considering two different atoms

• Example: ZnS
• Space group Fത43𝑚 (#216): less symmetries. Order 

of the group 24
• No more glide symmetry since the two atoms are 

of different nature 

Zn

S

When adding atoms of different nature, the symmetry also tends to get
lower. 



Geometry of the unit cell
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right-handed set of crystallographic axes, x,y,z 
which point along the edges of the unit cell.
The origin of our coordinate system coincides with 
one of the lattice points

The length of the unit cell along the x,y and z 
direction are defined as a,b, and c. The angles 
between the crystallographic axis are defind by
α = the angle between b and c
β = the angle between a and c
γ = the angle between a and b

a, b, c, α, β, γ are collectively known as the lattice 
parameters (often also called ‘unit cell 
parameters’, or just ‘cell parameters’).

→ Miller indices are a coordinate system! 
→ it depends on the unit cell structure, and with that on the crystal system 



Crystalline material

• in 3D: Bravais Lattice 

MSE-238 55

γ

β

α

a

b

c

Lattice point
r = 4a + 3b + c

set of 3 vectors
form the basis:
every lattice point is a 
linear combination with 
relative integers as 
coefficients

The Bravais lattice is expressed mathematically as an infinite 

set of points with translational symmetry along three axis that 

form a vector basis. Choosing an origin O, one can write

ℬ = 𝑃, 𝑶𝑷 = 𝑛1𝒂 + 𝑛2𝒃 + 𝑛3𝒄, (𝑛1,𝑛2 𝑛3) ∈ ℤ3



b

c
Crystal Direction : r = λ(1a + 3b + 1c)

[1 3 1]

▪ Crystal directions are lines that pass through at least two lattice points.

▪ The direction can be defined by an origin (all lattice point can be an origin) and the 

coordinate of the other point in the lattice basis.  

▪ The coordinates, which are relative integers, represent the Miller indices. 

a

Crystal directions

56

if they are not integers,
multiply by common 
denominator to get the 
Miller index



▪ Crystal or lattice  planes are planes that pass through at least 3 lattice points.

▪ They can be defined by the intercept of the plane with the basis axis: 

▪ Because of the translational symmetry of the Bravais lattice, a lattice plane contains 

an infinite number of lattice points

a

b

c

2a

3b

1c

1

2
 

1

3
 

1

1
 









1

2
   

1

3
   

1

1
  6  = (3 2 6) 

Crystal planes

lowest common multiple 

take the inverse



Summary of notations

(h, k, l) is for points. Remember to use the negative sign (-h) instead of bar sign 

(തℎ) and don’t reduce fractions–these rules apply to directions and planes. 

[hkl] is for a specific direction. 
<hkl> is for a family of directions. 

(hkl) is for a specific plane. Remember about reciprocal (inverse) space in planes! 
{hkl} is for a family of planes. 
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Reciprocal lattice vectors
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two families of planes with d-
spacing d1 and d2

normals to the family of 
planes from common 
origin O

reciprocal (lattice) vectors

longer vector for smaller 
d-spacing

||d1*|| = C/d1

||d2*|| = C/d2

length inversely 
proportional to lattice 
spacing d

direction normal to 
plane

C = 2π



Reciprocal lattice
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The reciprocal lattice unit cell of a 
monoclinic P crystal defined by 
reciprocal lattice vectors a*, b* and c*

for the (102) planes:

for the (hkl) planes:

plane indices are components of the 
d*hkl vector

direct lattice vector: directions are its 
components



Reciprocal lattice
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Plan of a monoclinic unit cell 
perpendicular to the y-axis

c* is perpendicular to both a and  b, which means their dot 
products are zero
c*・a = 0 and c*・b = 0 
c*・c = cc* cos 𝜙
with ||c*|| = Τ2𝜋 𝑑001 and from drawing: c cos 𝜙 =d001

c*・c  = Τ2𝜋𝑑001 𝑑001 = 2𝜋

does we have:

We have a new basis new basis (O, a*, b*, c*) in which  a vector N*hkl = ha* + kb* + 
lc* is perpendicular to the plane (hkl) 

If we consider any vector in the direct space R = r1a + r2b + r3c and one in the                               

reciprocal space N* = n1a* + n2b* + n3c*, we have: 

𝑹 ⋅ 𝑵∗ = 𝑟1𝑛1𝒂 ⋅ 𝒂∗ + 𝑟2𝑛2𝒃 ⋅ 𝒃∗ + 𝑟3𝑛3𝒄 ⋅ 𝒄∗ = 2𝜋(𝑟1𝑛1  + 𝑟2𝑛2 + 𝑟3𝑛3)

an integer



Find the reciprocal space vectors from direct 
lattice vectors

62

x x x

x x x

find a* which is orthogonal to b and c 
and fullfills a・a* = 2π

Reminder Volume:

a* = (𝒃 × 𝒄)
2π
𝑉

  

→ cross product!

a・a* = a・(𝒃 × 𝒄)
2π
𝑉

so we can find the reciprocal space vectors by:

= 2π



Distances between (hkl) planes

63

The reciprocal space formalism facilitates the derivation of the interplane distance of 

parallel (hkl) planes. 
𝑶𝑨 =

1

ℎ
𝒂 𝑶𝑩 =

1

𝑘
𝒃 𝑶𝑪 =

1

𝑙
𝒄

• Calculate the reciprocal lattice vectors 𝒂∗, 𝒃∗, 𝒄∗ and  the vector 𝑵(𝒉𝒌𝒍)
∗

• Find the norm of 𝑵(𝒉𝒌𝒍)
∗ -→ find the distance. 

as we have seen before, for any vector (e.g. OA) in real space it holds
𝑶𝑨 ⋅ 𝑵 𝒉𝒌𝒍

∗ = 𝑶𝑩 ⋅ 𝑵 𝒉𝒌𝒍
∗ = 𝑶𝑪 ⋅ 𝑵 𝒉𝒌𝒍

∗ = 2π ∗ integer

𝑑(ℎ𝑘𝑙) =
2𝜋

𝑵(𝒉𝒌𝒍)
∗

distance d(hkl) is the projection of OA (or OB or OC) onto the 
normal of the plane → the scalar product

now we have the reciprocal lattice vector N*(hkl) which is 

perpendicular to the (hkl) plane

does we can now calculate the distance by projection of OA onto 

the unit vector along N*(hkl) 

𝑑ℎ𝑘𝑙

β

γ

N* = ha* + kb* + lc*

𝑑(ℎ𝑘𝑙) = 𝑶𝑨 ⋅
𝑵(𝒉𝒌𝒍)

∗

𝑵(𝒉𝒌𝒍)
∗



The scattering vector q always lies 
perpendicular to the scattering planes if the 
Bragg condition is fullfilled 

the angle subtended by kin = 2𝜋∕𝜆 (or kout) 
and the scattering planes is 𝜃. 

The scattering angle is 2𝜃

Bragg law:

independent of wave length 
(experimental condition)

Bragg law
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2𝑑 sin 𝜃 = nλ

𝒒 = 𝑞 =
4𝜋sin(𝜃)

𝜆

𝑑 = n
2𝜋

𝑞



Laue’s condition and Bragg’s law
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N*



Laue condition → The reciprocal space lattice

𝑲 = 𝒌 − 𝒌0reciprocal lattice vector N*=

Laue condition



Elastic scattering and scattering vector
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wave vector 𝒌 =
2𝜋

𝜆

elastic scattering: no loss in photon 

energy but direction of the photon can 

change with a scattering angle 2θ

𝒌𝑖𝑛 = 𝒌𝑜𝑢𝑡

scattering vector 𝒒 = 𝒌0 − 𝒌

𝑞 = 2 𝑘 sin 𝜃 =
4𝜋 sin 𝜃

𝜆

q

k0 = kin

λ [Å] = 12.3984/E [keV] 

X-ray energy mostly given in keV

light λ = 400 to 600 nm
X-ray tube λ = 1 to 2 Å

Cu Kα = 1.5406 Å
synchrotron λ = 0.1 to 5 Å
thermal neutrons λ = 1 to 10 Å
electrons λ = 0.025 Å



a

c

b a*

c* b*

Real space Reciprocal space

e.g. a < b < c a* > b* > c*

The spacings between peaks in reciprocal lattice 
(a*, b*, c*) are inversely proportional to the 

corresponding dimensions in real space (a, b, c) 

The reciprocal lattice represents the 
framework and components of the diffraction 
pattern 

Reciprocal space lattice → diffraction pattern

The reciprocal lattice is the 
Fourier transform of the 
direct lattice!



Diffraction

• Bragg’s law: simple geometric consideration if a constructive interference CAN 
occur

• Crystal is not just the lattice (and lattice planes) but also consists of a motif!

• it is the lattice which determines the geometry of the pattern and the motif 
which determines the intensities of the X-ray diffracted beams.

• The diffraction pattern is the is the square of the Fourier transform of that 
system
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a*

c* b*



Bragg condition and the Ewald sphere

To see a diffraction peak @ (hkl) :

the Bragg points (000), which is at the position of the 
direct incoming beam 

and the Bragg point (hkl) from the reciprocal space 
lattice

must lie on a sphere of radius equal |k| (the wave vector 
of the experiment) in reciprocal space ℛ, the so called 
Ewald sphere

MSE-238

elastic scattering: 𝒌𝑖𝑛 = 𝒌𝑜𝑢𝑡  

ℛ



Interaction of X-rays with a crystal
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interaction with electron
polarization factor

scattering from an atom
atomic form factor f

scattering from unit cell
structure factor F



Scattering and Fourier Transform
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2 electrons

N electrons

Scattering amplitude: 𝐴 𝒒 = −𝑟0(1 + 𝑒𝑖𝒒⋅𝒓)

Phase difference of electron placed at position Ԧ𝑟 : 
Δ𝜑(𝒓) = 𝒌 − 𝒌′ ⋅ 𝒓 = 𝒒 ⋅ 𝒓

Phase factor : 𝑒Δ𝜑(𝒓)= 𝑒𝑖𝒒⋅𝒓

Scattering amplitude: 𝐴 𝒒 = −𝑟0 ෍
𝑗

𝑒𝑖𝒒⋅𝒓

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑝𝑙𝑎𝑐𝑒𝑑

𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛 (𝒓= 0)

Electron distribution 𝜌( Ԧ𝑟)

atomic form factor: 𝑓0 𝒒 = න 𝜌(𝒓)𝑒𝑖𝒒⋅𝒓𝑑𝒓

Fourier Transform of electron
density distribution !



Atomic form factor and structure factor →
scattering from unit cell
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Electron distribution 𝜌( Ԧ𝑟)

Scattering amplitude: 𝐹 𝑄 = −𝑟0 න 𝜌( Ԧ𝑟)𝑒𝑖𝑄⋅ Ԧ𝑟𝑑 Ԧ𝑟

Fourier Transform of electron
density distribution !

→atomic form factor

at large Q: small structure 
atomic scales

scattering from unit cell:
interaction between atoms (constructive and destructive 

interference)
structure factor 



S = vector sum of atomic form factors

as mathematically calculated in the last 
lecture!

Intensity of measured Bragg peak (hkl) is 
proportional to |Shkl|

2 

All phase information is lost! 

/6

2/3

/2

Im

Re

F

f1

f2

f3

Interaction with a unit cell: the structor 
factor

phase 𝜙

𝑲. 𝒓 = (h𝒂∗+𝑘𝒃∗+𝑙𝒄∗).(xla+ylb+ zlc)
𝒂*𝒂=𝒃*𝒃=c*c= 𝟐𝝅 and 

𝒂*𝒃=𝒃*𝒂=𝒄*𝒂 … =0

𝜙𝑙 = 2𝜋(ℎ𝑥𝑙 + 𝑘𝑦𝑙 + 𝑙𝑧𝑙)



Diffraction and Fourier transform

scattering amplitude from a crystalline material

𝐹𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝒒 = ෍

𝑙

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑓𝑙 𝒒 𝑒𝑖𝒒∙𝒓𝑙

atomic form factor of the 
atom situated at position rl

rl = Rn+rj

Rn lattice vector
rj position vector of the 
atoms in the unit cell 
(= the motif)

lattice unit cell structure 
factor

= ෍

𝑹𝑛+𝒓𝑗

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑓𝑗 𝒒 𝑒𝑖𝒒∙(𝑹𝑛+𝒓𝑗) = ෍

𝑛

𝑒𝑖𝒒∙𝑹𝑛 ෍

𝑗

𝑓𝑗 𝒒 𝑒𝑖𝒒∙𝒓𝑗

with Laue’s condition for 
constructive interference 

q = K, with 𝑲 ∈ ℛ
at any other scattering vector q, 
the intensity is zero

𝑆 𝑲 = ෍

𝑗

𝑓𝑗 𝑲 𝑒𝑖𝑲∙𝒓𝑗



X-ray diffraction and systematic absences

76

We can view non-primitive crystal structures as being defined by the conventional cell, and 
a motif with a number of atoms equal to the number of atoms per conventional cell. 

▪ Be careful: while it describes a similar crystal, it is not a rigorous way to look at crystal 
structures, as it leads to believe that the BCC and FCC don’t have their own Bravais 

Lattice prime vectors. Also, it leads to believe that planes like the (200) planes are not 
crystal planes for the BCC and FCC structures !

     It is however a good way to treat diffraction and understand systematic absences. 

𝑆 𝑲 = 2𝑓𝑀𝑜 for ℎ + 𝑘 + 𝑙  even 

𝑆 𝑲 = 0          for ℎ + 𝑘 + 𝑙  odd

▪ Indeed, to these multiple atoms motifs, 
we can now apply the formalism of 

structure factors 𝑆 𝑲 = 𝑓𝑀𝑜൫

൯

1 +

 (−1) ℎ+𝑘+𝑙



1/8

1/2

h k l all even, or h k l all odd 

h + k + l = 2n (i.e. even) 

All h k l combinations allowed

h k l all even AND h+k+l = 4n, or h k l all odd 

Interaction with a unit cell: systematic 
absences



Sample types
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Sample types and experiments
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rotation method with 
monochromatic light

By rotating the crystal around an 
axis perpendicular to the incident 
beam (𝜙), diffraction maxima pass 
through the surface of the Ewald 
sphere and are registered on a 2D 
x-ray detector 

Laue diffraction
pink beam = many wavelength

Multiple Ewald spheres with
different radius intersecting with
several Brapp pints from the
reciprocal space lattice



Textured sample and pole figure
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alignment of one of the symmetry axis
pointing perpendicular out of the thin film

Ti-Ni-Zr alloy thin films
(interesting for hydrogen storage)

Given a specific set of reciprocal lattice 
vectors, {hkl}
The pole figure 𝑃ℎ𝑘𝑙 𝑞
Gives the probablity of finding that plane in 
the direction, q



Textured samples: orientation information
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axis-angle representation of 3D 
orientation
one vector defining the axis, and an 
angle defining the rotation around 
it

rotation around z-axis by 180°

rotation around z-axis by -180°

rotation axis = z-axis

if there is a two-fold symmetry around that 
axis, rotation of 0° and 180° and -180° are 
equivalent!

what defines if certain orientations are equivalent? 



Orientation of a crystal and crystal symmetry 
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the more symmetry elements a point group has, the smaller is the 
fundamental zone since more and more orientation become equivalent

point group 222 622 432

crystal system orthorhombic hexagonal cubic

→ this also means for a full dataset in single crystal diffraction fewer 
orientations of a crystal need to be measured if there is a higher 
symmetry



Texture analysis
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• The pole figure

• Given a specific set of 
reciprocal lattice vectors, {hkl}

• The pole figure gives the
probablity of finding that plane 
in the direction, q

• The inverse pole figure

• Given a specific direction y in 
the sample (here: the wire 
direction = draw direction)

• The inverse pole figure gives
the probability that y falls in a 
certain lattice orientation.



Powder diffraction

Conditions for diffraction in a powder sample. A detector will only see a diffracted signal 
if the dhkl spacing, the orientation of the crystallite, and the angle of the detector 2𝜃 to the 
incident x-ray beam lead to the diffraction condition being satisfied. This is fulfilled by 
the yellow-highlighted crystallite. 

MSE-238



XRD 
Imperfect microstructure

MSE-238

• large crystal with perfect atomic arrangement give rise to perfectly sharp peak 
(except of instrumental broadening)

• imperfections such as grain boundaries, defects at dislocations, stacking faults, 
stresses → peak broadening, as well as possibly peak position shifts 

• small crystal size: “defect” as the long-range atomic arrangement is disrupted at 
the interface → peak broadening

• Scherrer width 

• when looking at more than one order of a reflection, the effect of ”size” and 
“strain” can be separated

• Rietfeld refinement to get all information out of  powder diffraction data 




=

cosD

K
B



Scattering/Diffraction
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Fourier transform radial integration

scattering vector q

ra
d

ia
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y 
in
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d
 I
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te

n
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ty

Ԧ𝑞 = 𝑞 =
4𝜋sin(𝜃)

𝜆

the field distribution at a distant detector is the Fourier transform of the electric field 
distribution in the exit plane of a sample
BUT we don’t measure field but the intensity, which is the squared field: complex 

quantity: complex part (the phase) get lost → the phase problem



Scattering/Diffraction
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larger structures scatter at smaller angles

scattering and diffraction can be used to study 
orientation of nanostructures or crystalline planes



WAXS/XRD and SAXS
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Electron distribution 𝜌( Ԧ𝑟)

Scattering amplitude: 𝐹 𝑄 = −𝑟0 න 𝜌( Ԧ𝑟)𝑒𝑖𝑄⋅ Ԧ𝑟𝑑 Ԧ𝑟

Fourier Transform of electron
density distribution ! → atomic form factor

low electron denisty

for example water

at large Q: small structure 
atomic scales

at small Q: larger structures 
nanometer scales

Fourier Transform of electron density (but now at the nanoscale)
and with

→ single particle form factor
      depends on size and shape of the particle

low electron denisty

for example water

high electron density

for example solid 
nanoparticle



Structure factor in SAXS
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Electron distribution 𝜌( Ԧ𝑟)

Scattering amplitude: 𝐹 𝑄 = −𝑟0 න 𝜌( Ԧ𝑟)𝑒𝑖𝑄⋅ Ԧ𝑟𝑑 Ԧ𝑟

Fourier Transform of electron
density distribution !

→atomic form factor
low electron denisty

for example water

high electron density

for example solid 
nanoparticle

at large Q: small structure 
atomic scales

at small Q: larger structures 
nanometer scales

Fourier Transform of electron density (but now at the nanoscale)
and with

→ single particle form factor
      depends on size and shape of the particle

non-dilute system: inter-particle interaction

scattering from unit cell:
structure factor 

→ particle structure factor



SAXS data analysis
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The phase problem

→we cannot directly calculate back with an inverse Fourier transform the particles 
shape and size, different approaches to retrieve information from the scattering 
pattern

• model independent

• mathematically model the SAXS curve

• iterative phase retrival

• pair distance distribution function (PDDF)



Small-angle scattering
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Willmott, P. (2011). Scattering Techniques. An Introduction to Synchrotron Radiation, John Wiley & Sons, 
Ltd: 133-221.

low q: information about interaction s between the particles and 

particle size, no information about shape of particle

intermediate q: in the order of the particle size, particle shape

high q: Porod’s region contrast at the interface between the particle 

and their surrounding, measure of surface area



Guinier approximation
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Guinier approximation valid only in the region of small q values, RG can be derived

 

I(q)  I(0)e−(1 3)q 2RG
2

A not existing linear range indicates the presence of very large structures which scatter at 

low q, perhaps outside the accessible q range → change detector distance, change λ, 
check with SLS 



Guinier approximation
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• Radius of gyration RG: “weight average” of all radii present in the sample in 
analogy to mechanics

solid sphere radius R:

thin rod length L:

thin disc radius R:

cylinder of height h and radius R:

2 23

5
GR R=

2 21

12
GR L=

2 21

2
GR R=

2 2
2

2 12
G

R h
R = +

For a polymer coil with end to end distance 𝑅𝐺
2 =

1

6
𝑅2

R



Small-angle scattering: 
Power law
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Slope of the scattering curve: power law 
behavior
q-D with D the fractal dimension
How does the mass changes as a function of the 
size
rod-like D=1
disk-like D=2
in general: the higher D, the more compact is 
the structure
D=4 Porod scattering
→sharp interphase of two phases, information 

about surface area



Order and disorder
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long-range order: periodic 
distribtuion of atoms ordered 
over large distances

exact location from an atom 
can be inferred relative to a 
chosen atom at the origin
→ atomistic

short-range order: over short distances 
(some atomic diameters) a certain 
periodicity in the distribution of atoms 
still exists.

some randomness in the position of the 
atoms: structural order can only be 
described statistical

→ how to describe 
structure of amorphous 
materials?



Pair distribution function (PDF)

• probability of finding an atom/molecule at a certain distance normalized over 
the overall density → local density in the structure surrrounding a typical atom 
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g 𝑟 =
𝑑𝑛(𝑟,𝑟+𝑑𝑟)

𝑑𝑣(𝑟,𝑟+𝑑𝑟)

1

𝜌0
=

𝜌 𝑟

𝜌0

𝑑𝑛 ∶ number of  atoms in a spherical shell
𝑑𝑣 : spherical shell volume = 4πr2dr
𝑟 : distance of the shell from an arbitary atom selected as the origin
𝜌0: average particle density
𝜌(𝑟) : atomic pair density 
R0 = radius of atom (solid sphere model)

r

dr

g 𝑟 < 2R0 = 0

R0 

4𝜋𝑟 𝜌 𝑟 − 𝜌0  : excess particle number density 
in a spherical shell at radius r

h(r) = g(r)-1 total correlation function, 
deviation from uncorrelated behavior



Pair distribution functhon

r

g
(r

)

2R0

crystal

g 𝑟 < 2R0 = 0

g(r) infinite series of discrete 
peaks (delta functions) at the 
values of interatomic 
separation, depending on 
crystal structure

r

g
(r

)

2R0

1

gas

r

g
(r

)

2R0

1

liquid
amorphous solid

Beyond the hard sphere 
diameter, the probability of 
finding another atom is equal 
to the average gas density, 
g(r) = 1 

g(r) several broad peaks 
and valleys until reaching 
a constant value at large 
distance r



Pair distribution function for liquid/glass
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r

g
(r

)

2R0

1

g 𝑟 < 2R0 = 0

R0 
average distance to 
the first
shell of the nearest 
neighbors

/second

valley because 
nearest neighbours 
take space

𝜉 correlation distance

correlation distance 𝜉
distance at which g(r) 
reaches asymptotic 1



Glass formation and glass transition 
temperature
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Crystallization happens  at a well 
defined melting temperature Tm 

with an abrupt change in the 
specific volume

Glass transition: The temperature 
where the glass transition happens 
depends on the cooling rate 
→ glass a) with a slower cooling 

rate than glass b)

thermal expansion coefficient 
changes (different slope) but no 
abrupt change in specific volume

Debenedetti, P. G., & Stillinger, F. H. (2001). Review article 

Supercooled liquids and the glass transition. Nature, 410(March), 259.



Atomic scale structure: models
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random-network model → covalently bonded glasses (amorphous silicon, oxide glasses)
random-coil model → polymer-chain organic glasses
random close-packing model → metallic glasses

Enyclopaedia Britannica

continous random-network 
model for network glasses

random-coil model 
for polymeric glasses

random close-packing model
“efficient cluster packing”
for metallic glasses



Continous random network model

• Based on the observation that oxid glasses have similar mechanical properties 
(elastic modulus etc) as crystals: properties are driven by the local bonding

• → contionous random network model: three-dimensional network of bonded 
units that lack translational symmetry, but respects bond functionality and can 
be extended indefinitely (W.H. Zachariasen 1932)

• chemical species which enter into the structure of the network forming strong 
chemical bonds with oxygen are called network formers. Chemical species such 
as Na or Ca, which do not bond directly with the network but sit (in ionic form) 
within its interstitial holes are called network modifiers → they modify 
interaction (depending on type  of bonding strenghten or weaken!)
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What is a polymer?
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Chain-like molecules where chemical groups (at least to some extend) repeat
Covalent bonds between the units. 
→ long string like molecules

main elements forming the basis: 
C, O, Si



Molecular weight
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There is almost always a distribution in molecular weight M because the 
degree of polymerization N, i.e. the number o monomers, is a random 
variable 

 

number average :

weight average:

ni and wi are number and weight fractions of molecules/chains with molar mass Mi

The polydispersity index is given by Mw /Mn

Viscosity of molten polymers depends on its molecular weight!

Mn =
niå M i

niå

Mw =
wiM iå
wiå

=
niM iM iå
niMiå



Size of polymer chains

• Polymers normally form random coils due to the entropy gain.

• The number of microstates is much higher for a random coil configuration 
compared to a stretched chain.

• Freely jointed chain segment model: At each “connection point” a new 
direction is acquired by random. If each segment is equal to the chemical 
monomer in size the “walk” along the chain consists of N vectors at each point in 
a random direction (random walk).
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R

rmax = Na

contour length

R = aN1/2

expected value R of the end-to-
end distance for the random 
variable r

N the number of monomers 

a the length of one monomer 



Real chain: Kuhn length or persistence length

• In real chains there are steric limitations: not free to rotate but constrained 
to have certain definite bond angles, but some freedom to rotate

• thus after a certain distance, the statistical step length, called the Kuhn length 
b which is larger than the monomer length a, the segments are freely jointed, 
the number of segments for the random walk is now aN/b 

• For stiff polymers an alternate model is used: continuously bending worm-like 
chains.

• but also here: there is a loss of correlation of direction over a certain distance, 
the persistence length lp . Correlation decays exponentially
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𝑅 = 𝑏(𝑁𝑎/𝑏) Τ1 2 = (𝑎𝑏𝑁) Τ1 2

𝐶∞ =
𝑎2

𝑏2  is the Flory’s characteristic ratio

𝑅 = (2𝑙𝑝𝑎𝑁) Τ1 2 



Interaction with the solvents
In a “good solvent”: repulsion between the chains: volume exclusion effect, coil 
expands: 
R=aNv, v>1/2, from experiments in general v≈0,6

”Theta solvent”: no interactions (repulsive effect is exactly cancelled by attractive 
effects), this is also true for a polymer melt: same interaction within chain as with 
other chains around, “normal random walk” 
R = aN1/2 

in a “bad solvent”: segments attract each other, collapse into a compact structure
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𝑅 = 𝑎𝑁 Τ1 3



Crystal structure of polymers
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crystallization: basic requirement chain into straight perfectly ordered form
pack lattice by orienting the chains uniformly in one direction
→ monomeric units as structure units
→ strong anisotropy in binding force: covalent bond in one direction of the unit cell, van 

der Waals in the two other directions, if Hydrogen bonds are possible: stronger 
interaction

polyethylene unit cell (stretched zig-zag)
helical twist

hydrogen bonds in the plane
Aramid fibers 
(Kevlar)

DNA



Crystallinity 
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Polymer molecules show some degree of ordering. Depending on molecular 
symmetry, molecular weight (kinetics) and branching, etc.

Polymers never fully crystals because of the entanglement of the chains in the melt

Lamella thickness
~10 – 20 nmLamellar growth 

direction ~10 µm

spherulite: lamellae 
branches grow from 
a nucleation center



Semi-crystalline polymer:
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d

d

competition between polymer stretching and coiling and reduction in free 
energy for crystal formation on the other hand determines lamellar thickness



Thermoplastic materials

• linear or slightly branched polymers

• At high temperature (above 170 – 300°C) molten state

→soften when heated and harden when cooled → reshaping

• process is reversible and can be repeated → materials can be recyled

• bonds between individual molecules is relatively week (e.g. van der Waal 
bonding)

• above glass transition: polymer molecules can slide and be molded

• amorphous, semi-crystalline (or liquid-crystalline)

• examples: polyethylene, polystyrene, poly(vinil chloride)
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Thermosetting polymers

• permanently hard (after curing) do not soften upon heating

• network polymers are covelently linked → three-dimensional structure

• at high temperature become damaged and degraded

• examples: vulcanized rubbers, epoxies, polyamides

Polymer gels are highly elastic when they consist of long chains connected with 
few cross-link points. Small chains and many cross-link points lead to a higher 
Young’s modulus

Elastomer: low number of cross-links (e.g. car tires 1 per 100 units)

Thermosets: high number of cross-link density (10-100 times more)
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Structure – mechanical property: crosslinks
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In a cross-linked polymer the elastic modulus 
depends on the average molecular mass 
between cross-links Mx, R ,T and the density 
ρ:

rubber plateau in non-crosslinked polymers: 
entanglement of polymer chains creates 
temporary cross-links

xM

RT
G

r
=



Structure – mechanical property
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Materials science of polymers for engineers (Oswald, Menges)

Tensile stress-strain curves for several materials



Biological Materials: main components of life

• Polymeric molecules:

• Nucleic acids (DNA, RNA)

• Proteins

• Polysaccharide (random sequence)

• Lipids: fats and oils

• Amphiphilic molecules (self-assembly)

• phospholipids

• Biominerals

• Calcium phosphate (example: hydroxyapatite in bone)

• Calcium carbonate (example aragonite and calcite in mollusk shells)

• Silicates (diatoms) 
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DNA base pairs
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Biology, Neil Campbell and Jane Reece

Copyright © 2005 Paerson Education, Inc. publishing as Benjamin Cummings

DNA backbone: phosphate and deoxyribose
4 different bases: thymine (T), cystosine (C), 
adenine (A) and guanine (G)

specific base pairing  (A-T and C-G)
allows to reproduce a copy from a first strand
(DNA replication)
very stiff polymer chain, pack into complex 
hiearchical structure with the help of proteins 
to fit into the nucleus of the cell: no random 
walk

RNA slightly different chemical composition, 
single stranded, involved in transcription of 
genetic information to proteins



Protein

• Amino acid sequence = primary structure, determined by genetic code

• 22 different proteinogenic amino acids with hydrophobic (unpolar), hydrophilic 
uncharged (polar) or hydrophilic and charged (acidic or basic)

• hydrophilic and hydrophobic parts in the same molecule → specific interactions 
along the chain: don0t follow random walk but assisted self-assembly

• specific function due to very specific 3D structure:

• enzymes, signaling, transport, immunsystem, muscle movement…
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Polysaccharides

• carbohydrates, general formula Cx(H2O)y, monomers: various sugars

• no defined sequence and architecture (side-chains)

• store energy: starch (amylose and amylopectin), glycogen

• structural polymer: cellulose, chitin
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Aggregates of amphiphiles

The aggregates formed is determined by the geometry of the amphiphile, 
maximizing the contact of the hydrophilic head with water while minimizing its 
contact with the hydrophobic tail

sphere                             cylinder               bilayer
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Biomineral: example calcium carbonate
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The crystalline structure of Calcium carbonate: Polymorph

trigonal orthorombic hexagonal



Hybrid materials/Composite materials

MSE-238

composite materials: mixture on the microscopic scale of several phases

hybrid materials are composites consiting of two consituents at the nanometer or 
molecuar level

not a strict separation between composite and hybrid material. Both combine 
properties from from than one material with distinct structure and chemocal 
composition, contributing synergistically to the physical, chemical or mechanical 
properties



Composite materials

• Reinforced composites:

• fiber composites: continous matrix reinforced with high strenght fibres

• short (discontinous) fibers

• long (continous) fibers

• particulate composites: (isotropic) particles immersed in a matrix

• flake composites: flat reinforcements aligned in plane in matrix

matrix can be for example: polymer (thermoset or thermoplastics (PEEK)), 
metalceramic, carbon

• sandwich structures: combining various materials used to form functional 
structures

• functional composites: example composites with sensing functionality
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Biocomposites

• often (but not only) a combination of biominerals (high stiffness, low 
thoughness) with a biopolymer (high thoughness, low young’s modulus)

• Hierarchical structure to balance stiffness, strength and thoughness. While 
strength decreases due to the existence of flaws, thoughness increases with more 
hierarchical levels, since a growing crack will encounter barriers as it propagates

MSE-238

mineral fraction


	Default Section
	Slide 1
	Slide 2: General Outline
	Slide 3: Hybrid materials/Composite materials
	Slide 4: Application
	Slide 5: Applications: example Boeing 787
	Slide 6: Composite materials
	Slide 7: Polymer fiber composites
	Slide 8: Polymer fiber composites
	Slide 10: Polymer fiber composites
	Slide 11: Fiber reinforced composite
	Slide 12: Fiber composites: wind turbine blades 
	Slide 13: Sandwich structure: laminated sheets and shells
	Slide 14: Functional composites: structural batteries
	Slide 15: Functional composite example: Hydrogen gas sensors 
	Slide 17: Biocomposites
	Slide 18: Biocomposite: toughness and strength
	Slide 19: Hierarchical materials
	Slide 20: Hierarchical materials
	Slide 21: Bio-composites: hierarchical structure
	Slide 22: Fiber composite: hierarchical structure
	Slide 23: Bio-composites: hierarchical structure
	Slide 24: Example: Mollusk shell
	Slide 26: Abalone nacre:  a superior fracture toughness
	Slide 28: Bioinspired materials
	Slide 29: Recap 
	Slide 30: The hard sphere model
	Slide 31: The hard sphere model
	Slide 32: Packing density
	Slide 33: Crystalline material
	Slide 34: Crystalline material
	Slide 35: The cubic system: unit cells
	Slide 36: Interstitial Sites: Ionic crystals
	Slide 37: Covalent crystals and covalent/ionic crystals
	Slide 38: Covalent and VDW crystals
	Slide 39: Symmetries in lattice
	Slide 40: 5 plane lattices  classification according to symmetry 
	Slide 41
	Slide 42: Point groups
	Slide 43: Symmetry operations in 2D
	Slide 44: Point Symmetry operations in 3D
	Slide 45: 32 Point groups in 3D
	Slide 46: 2D Plane groups
	Slide 47: Travel symmetry operations 2D
	Slide 48: Travel symmetry operations in 3D
	Slide 49: 17 plane groups in 2D
	Slide 50
	Slide 51: 230 space groups in 3D
	Slide 52: Symmetry in 3D: Space groups
	Slide 53: Symmetry in 3D: Space groups
	Slide 54: Geometry of the unit cell
	Slide 55: Crystalline material
	Slide 56: Crystal directions
	Slide 57: Crystal planes
	Slide 58: Summary of notations
	Slide 59: Reciprocal lattice vectors
	Slide 60: Reciprocal lattice
	Slide 61: Reciprocal lattice
	Slide 62: Find the reciprocal space vectors from direct lattice vectors
	Slide 63: Distances between (hkl) planes
	Slide 64: Bragg law
	Slide 65: Laue’s condition and Bragg’s law
	Slide 66: Laue condition  The reciprocal space lattice
	Slide 67: Elastic scattering and scattering vector
	Slide 68: Reciprocal space lattice  diffraction pattern
	Slide 69: Diffraction
	Slide 70: Bragg condition and the Ewald sphere
	Slide 71: Interaction of X-rays with a crystal
	Slide 72: Scattering and Fourier Transform 
	Slide 73: Atomic form factor and structure factor  scattering from unit cell
	Slide 74: Interaction with a unit cell: the structor factor
	Slide 75: Diffraction and Fourier transform
	Slide 76: X-ray diffraction and systematic absences
	Slide 77: Interaction with a unit cell: systematic absences
	Slide 78: Sample types
	Slide 79: Sample types and experiments
	Slide 80: Textured sample and pole figure
	Slide 81: Textured samples: orientation information
	Slide 82: Orientation of a crystal and crystal symmetry 
	Slide 83: Texture analysis
	Slide 84: Powder diffraction
	Slide 85: XRD  Imperfect microstructure
	Slide 86: Scattering/Diffraction
	Slide 87: Scattering/Diffraction
	Slide 88: WAXS/XRD and SAXS
	Slide 89: Structure factor in SAXS
	Slide 90: SAXS data analysis 
	Slide 91: Small-angle scattering
	Slide 92: Guinier approximation
	Slide 93: Guinier approximation
	Slide 94: Small-angle scattering:  Power law

	amorphous materials
	Slide 95: Order and disorder
	Slide 96: Pair distribution function (PDF)
	Slide 97: Pair distribution functhon
	Slide 98: Pair distribution function for liquid/glass
	Slide 99: Glass formation and glass transition temperature
	Slide 100: Atomic scale structure: models
	Slide 101: Continous random network model
	Slide 102: What is a polymer?
	Slide 103: Molecular weight
	Slide 104: Size of polymer chains
	Slide 105: Real chain: Kuhn length or persistence length
	Slide 106: Interaction with the solvents
	Slide 107: Crystal structure of polymers
	Slide 108: Crystallinity 
	Slide 109: Semi-crystalline polymer: 
	Slide 110: Thermoplastic materials
	Slide 111: Thermosetting polymers
	Slide 112: Structure – mechanical property: crosslinks
	Slide 113: Structure – mechanical property
	Slide 114: Biological Materials: main components of life
	Slide 115: DNA base pairs
	Slide 116: Protein
	Slide 117: Polysaccharides
	Slide 118: Aggregates of amphiphiles
	Slide 119: Biomineral: example calcium carbonate
	Slide 120: Hybrid materials/Composite materials
	Slide 121: Composite materials
	Slide 122: Biocomposites


